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Abstract. The self-consistent problem is solved for the interaction of two dipole atoms situated at arbitrary
distance from one another with the field of quasiresonant light wave. Atoms are considered to be linear
Lorenz oscillators. Polarizing fields inside the system include both Coulomb and retarding parts. The
solutions obtained are investigated for the case when atoms have the same polarizabilities and interatomic
distance is much less than external light wavelength. Formulas for electric fields inside and outside of small
object are obtained. It is shown that longitudinal and transverse optical oscillations are possible to exist
inside small two-atom object. Dispersion laws of these oscillations depend upon interatomic distance and
upon angle between axis of the system and the direction of propagation of external wave. The field outside
the small object in wave zone is linearly polarized with the choice of linear polarization of external field.
However, the directions of polarization of these waves are different and depend essentially upon frequency.
The amplitude of field outside small object in wave zone is shown to depend essentially on the frequency
of external field and interatomic distance. The results obtained are treated as near-field effect in the optics
of small objects making it possible to investigate the structure of small objects with optical radiation.

PACS. 42.25.Bs Wave propagation, transmission and absorption – 42.25.Gy Edge and boundary effects;
reflection and refraction

1 Introduction

Optics of dielectrics is based on the fundamental con-
cept about continuous matter where the spatial scale of
medium, interatomic distance, is significantly less than
wavelength of light. As a consequence of this concept the
Fresnel laws of reflection and refraction take place in which
the reaction of medium is concentrated at mathematical
surface [1]. Fresnel coefficients of light reflection and trans-
mission are used, in particular, for the description of pho-
tonic band gap in optical lattices where planes are sepa-
rated by distance equal to half of wavelength [2].

However, there exist a lot of physical situations where
near-field effect plays a significant role [3–7]. Theoretical
consideration of such situations is based on the concept
about discrete-continuous medium. According to this con-
cept, any point of observation inside medium may be sur-
rounded by Lorentz sphere. Dipoles within this sphere are
discretely distributed. The field of dipoles in the center
of Lorentz sphere is formed by Coulomb terms propor-
tional to 1

/
R3
a and retarding terms proportional to 1

/
R2
a

and 1/Ra where Ra is the distance between dipole a in-
side Lorentz sphere and its center. It was demonstrated
in [4], that the field of dipoles inside Lorentz sphere is
always different from zero because of field of 1/Ra type.
Thus, optics of dielectrics has to be based on the concept
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of discrete-continuous medium where the idea of continu-
ity is justified only outside Lorentz sphere. Lorentz sphere
is closed for observation points inside medium and the
role of discretely distributed atoms (structure factor) is
insignificant. For instance, the role of near-field effect in
refractive index of dielectrics with various types of symme-
try comes to some percents. The situation changes drasti-
cally if the observation point is situated near the surface
of medium. In that case Lorentz sphere is truncated and
Coulomb field of 1

/
R3
a type plays leading part in structure

factor. Various physical situations were examined in [3–7]
where near-field effect manifests itself under the influence
of structure factor at different types of symmetry of dis-
cretely distributed atoms. In [3], the boundary-value prob-
lem of quantum optics was examined where excited atom
spontaneously emitted a photon near the semi-infinite di-
electric. It was shown that atomic lifetime changes sig-
nificantly if the atom is in near zone relative to dielectric
surface. In [4], the boundary-value problem of classical op-
tics was considered where plane light wave was reflected
and refracted on the flat surface of semi-infinite dielectric.
It was shown that the non-Fresnel laws of light reflec-
tion and refraction appear for observation points in near
zone. It would be interesting to examine such a physical
situation when near-field effect manifests itself in observa-
tion points in wave zone relative to the surface. With that
end in view the boundary-value problem of classical op-
tics was examined where plane light wave interacts with
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ultra-thin nonabsorbing dielectric film consisting of sev-
eral atomic layers [5]. The processes of reflection and
transmission of light in view of near-field effect were con-
sidered and comparative calculation of reflectance and
transmittance was performed on the basis of Eiry formula
which use the idea of continuous film. Near-field effect was
shown to be significant in observation points at arbitrary
distance from the surface of film. In [6,7], the boundary-
value problem of nonlinear resonant optics of super thin
films was solved in view of near-field effect. The consider-
able role of near-field effect was shown in phenomena of
optical bistability, dynamic shift of resonance etc.

The purpose of this work is to investigate the opti-
cal properties of the system of two dipole atoms situated
at the arbitrary distance from one another. The optical
properties of the system are investigated with the probe
light field represented as a plane wave. We will demon-
strate that mutual influence of atoms in near zone may
be investigated in observation points located in wave zone
relative to the system of atoms. The various manifesta-
tions of this mutual influence will be treated as near-field
effect in small optical object.

The significant number of theoretical and experimen-
tal works [1,8] is devoted to the optics of small spherical
particles. However, theoretical consideration of these ob-
jects was based on the concept about continuous mediums
with a certain dielectric permeability independent on co-
ordinates. This work allows us to investigate fields inside
and outside of small objects with various distributions of
atoms inside these objects. It will be shown that the pres-
ence of another atom essentially changes the amplitude-
phase distribution of light field in wave zone in compari-
son with distribution of field of individual dipole [1]. This
and other optical properties of small object formed by two
dipole atoms we also call a near-field effect. The theoreti-
cal consideration of this effect will be based on the solution
of self-consistent set of equations for electric field strength
and atomic variables.

The large number of works is devoted to the theoretical
research of the problem of two atoms in the field of radi-
ation. Actually, the development of the theory of optical
superradiation [9] and the derivation of integral equations
of electromagnetic waves propagation in a medium [10]
start with the solution of this problem. Unlike [9] where
the collective spontaneous radiation of two atoms and the
kinetics of this process were considered, the problem of
two classical oscillators in classical field of light wave is
examined in this paper. Thus, the basic attention is given
to the investigation of spatial distribution of field inside
and outside of small object in near and wave zones. The
key purpose of this paper is the theoretical research of the
capability of optical field application for the investigation
of small objects with sizes much less than wavelength.

2 Master equations

We define the microscopic field of light wave E(r, t) in
some observation point r in an instant t with the following
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Fig. 1. The scheme of arrangement of two dipole atoms inter-
acting with the field of light wave.

equation [1]:

E(r, t) = EI(r, t) +
2∑
j=1

rot rot
pj(t−Rj/c)

Rj
, (2.1)

where EI(r, t) is the electric field strength of external light
wave propagating with speed of light c, pj is the induced
dipole moment of atom j which is considered to be the lin-
ear function of field E(rj , t−Rj/c) in the location of atom
j; Rj = |r− rj | where rj is the radius-vector of atom j
relative to the origin of coordinates located in the center of
one of atoms, for example, atom 1 (Fig. 1). Differentiation
in (2.1) is performed with respect to the coordinates of ob-
servation point. In the special case when the observation
point is in the location of one of atoms, we obtain from
(2.1) the system of two equations for unknown quantities
E(r1, t) and E(r2, t). Having defined these quantities, it
is possible to find a field in other observation points with
the aid of equation (2.1).

Equation (2.1) must be supplemented by equations for
atomic variables. Let atoms be a Lorenz oscillators [11].
In this case the vector of induced dipole moment pj takes
the following form:

pj = e(uj − ivj) exp (−iωt) + cc, j = 1, 2, (2.2)

where e is the charge of electron, ω is the frequency of
oscillations. Quantities uj and vj depend on the atomic
position and on time as the atomic eigenfrequencies ω1

and ω2 differ from the frequency ω of external light wave.
However, uj and vj will vary slowly in time if the differ-
ences ω−ω1 and ω−ω2 are small. In this case the following
inequalities are held:

|u̇j | � ω |uj | , |üj | � ω2 |uj | ,
|v̇j | � ω |vj | , |v̈j | � ω2 |vj | . (2.3)

These conditions allow us to rewrite an equation of motion
for dipole j

p̈j +
2
τ0

ṗj + ω2
jpj =

e2

m
E(rj , t) (2.4)

as

∂

∂t
(uj − ivj) =

(
−i∆j −

1
T

)
(uj − ivj) + iκ0E0j , (2.5)
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where m is the mass of electron, 1/τ0 is the relative rate
of energy decay of isolated dipole [11], κ0 = e/mω; T−1

is the total rate of decay of oscillator which can differ
from the rate of decay of isolated oscillator, ∆j = ωj − ω
is the detuning from resonance. We define E0j from the
expression for field

E(rj , t) = E0(rj) exp (−iωt) + cc (2.6)

as E0j = E0(rj).
Equations (2.5, 2.1) form the closed set of equations

where the reciprocal influence of field and atoms is taken
into account in a self-consistent way. Thus [1],

rot rot
pj
Rj
≡ 3 ([pj ] nj) nj − [pj ]

R3
j

+
3 ([ṗj ] nj) nj − [ṗj ]

cR2
j

+
([p̈j ] nj) nj − [p̈j ]

c2Rj
, (2.7)

where symbol [. . . ] means that the appropriate quantity
is determined in an instant t−Rj/c, nj = Rj/Rj . In the
special case when the observation point coincides the site
of one of atoms, Rj represents the interatomic distance R.
First addend in (2.7) corresponds to the Coulomb field of
dipole and other addends correspond to the retarding field
of dipole in observation point r. Field (2.7) is the polariz-
ing field of dipole j. This field differs from scattered field
[12]. Further on the spatial distribution of Coulomb and
retarding polarizing fields in various observation points
will be investigated in view of self-consistent interaction
of two dipoles using the steady solution of equation (2.5).

3 Electric field of light wave inside small
object

Placing the origin of coordinates in point r1, we have:
r1(0, 0, 0) and r2(0, R, 0) (Fig. 1). Choosing coordinate
system in this way, we obtain the following set of equa-
tions for unknown values of fields E(r1, t) and E(r2, t) in
the location of each atom:

E(ri, t) = EI(ri, t) +
3
[
pyj
]
y0 − [pj ]
R3

+
3
[
ṗyj
]
y0 − [ṗj ]
cR2

+

[
p̈yj
]
y0 − [p̈j ]
c2R

(i 6=j), (3.1)

where y0 is the unit vector in the direction of y-axis.
Let the external field be of the following form:

EI(ri, t) = E0I exp[i(k0ri − ωt)] + cc, (3.2)

where E0I is the constant amplitude, k0 is the wave vec-
tor with modulus equal to k0 = ω/c. Induced dipole mo-
ments and field in points r1 and r2 are determined by
expressions (2.2, 2.6) where p0j = e (uj − ivj) and E0j

are complex.
Substituting equations (3.2, 2.2, 2.6) into equa-

tion (2.1) and singling out uniformly oscillating factors,

we obtain for the case of steady solution of equation (2.5)
the following equality:

p0j = αjE0j, (3.3)

where

αj =
e2

m

1
ω2
j − ω2 − 2iω/T

(3.4)

is the polarizability of atom j [11].
Substituting (3.3) into the set of equations (3.1), af-

ter appropriate transformations we obtain the following
related equations:

py01 = α1 {Ey0I + 2Gpy02 exp(ik0R)} ,

py02 = α2 {Ey0I exp(ik0 ·R) + 2Gpy01 exp(ik0R)} , (3.5)

pβ01 = α1

{
Eβ0I − Fp

β
02 exp(ik0R)

}
,

pβ02 = α2

{
Eβ0I exp(ik0 ·R)− Fpβ01 exp(ik0R)

}
,

β = x, z (3.6)

where

G =
1
R3
− i

k0

R2
, F = G− k2

0

R
· (3.7)

The system of algebraic equations (3.5, 3.6) is linear,
therefore, it is possible to find its solution by any of stan-
dard methods. As a result, we come to the following for-
mulas for unknown quantities:

py01 = α1
1 + 2α2G exp [i(k0R+ k0 ·R)]

1− 4α1α2G2 exp (i2k0R)
Ey0I ,

pβ01 = α1
1− α2F exp [i(k0R + k0 ·R)]

1− α1α2F 2 exp (i2k0R)
Eβ0I ,

py02 = α2
exp (ik0 ·R) + 2α1G exp (ik0R)

1− 4α1α2G2 exp (i2k0R)
Ey0I ,

pβ02 = α2
exp (ik0 ·R)− α1F exp (ik0R)

1− α1α2F 2 exp (i2k0R)
Eβ0I . (3.8)

The corresponding expressions for the strengths of fields
are easily to find if to take advantage of formula (3.3).

Thus, the solution of self-consistent problem is found
in the case when external field is created by the plane wave
with frequency ω.

Before to write down the formulas for the field at each
atom, we shall make one more simplification. Let the own
frequencies of atoms be identical, i.e., ω1 = ω2 = ω0.
Then, α1 = α2 = α and we obtain with formulas (3.8)
the expressions for the complex amplitudes of the field
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on each of atoms in the following form:

Ey01 =
1 + 2αG exp [i(k0R+ k0 ·R)]

1− 4α2G2 exp (i2k0R)
Ey0I ,

Eβ01 =
1− αF exp [i(k0R+ k0 ·R)]

1− α2F 2 exp (i2k0R)
Eβ0I ,

Ey02 =
exp (ik0 ·R) + 2αG exp (ik0R)

1− 4α2G2 exp (i2k0R)
Ey0I ,

Eβ02 =
exp (ik0 ·R)− αF exp (ik0R)

1− α2F 2 exp (i2k0R)
Eβ0I . (3.9)

Thus, one can see from formulas (3.9) that the field in
the location of atoms, generally speaking, does not coin-
cide the external field. Everything is determined by the
magnitude of factors αF and αG, which are dependent
on the frequency of external field and distance between
atoms. Fields (3.9) coincide the external field only in the
case when each of the indicated factors much less than 1.
The last condition can hold when either distance between
atoms is rather large or the frequency of an external field
considerably differs from resonant frequency.

Let us relate the complex amplitudes of fields on each
atom with each other. It can be made as follows:

E02 = (Ex01x0 +Ez01z0) exp (ikrR)
+Ey01 exp (iklR) y0, (3.10)

where x0, y0, z0 are the unit vectors of coordinate system,

kr =
k0 ·R
R

− i
R

ln
1− αF exp [i(k0R− k0 ·R)]
1− αF exp [i(k0R+ k0 ·R)]

,

kl =
k0 ·R
R

− i
R

ln
1 + 2αG exp [i(k0R − k0 ·R)]
1 + 2αG exp [i(k0R + k0 ·R)]

·

(3.11)

Expression (3.10) in view of formula (2.6) means that the
field in the system is the superposition of two waves: trans-
verse wave with wave vector kr and longitudinal wave with
wave vector kl. The direction of each mentioned vector co-
incides the direction of y-axis (Fig. 1).

Take up the point about the reasons of origin of lon-
gitudinal wave. It follows from formula (3.10) that lon-
gitudinal wave takes place always when y-component of
complex amplitude of field at the first atom is nonzero.
Now, using formulas (3.9), it is easy to make a conclusion
that the indicated condition is held if y-component of ex-
ternal field is not equal to zero. Thus, if, for example, the
wave vector of incident wave k0 is parallel to y-axis, only
transverse wave propagates in the system. It is necessary
to notice that the situation when only longitudinal wave
propagates in the system is impossible, since, in this case
Ex0I , E

z
0I are equal to zero.

4 Laws of dispersion for longitudinal
and transverse waves inside small object

Let us investigate the dependence of kr and kl upon fre-
quency (that is the same, upon modulus of vacuum wave
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Fig. 2. Laws of dispersion for longitudinal (a) and transverse
(b) waves. Curve 1 represents k′r, k

′
l , curve 2 represents k′′r ,

k′′l . The angle between k0 and R equals to 45◦, R = 1 nm,
ω0 = 2.715 × 1015 s−1, T = 10−8 s.

vector k0). At first, we consider the dependence of kr on
k0. Formula (3.11) yields the behaviour of real part k′r and
imaginary part k′′r of wave vector kr. Both relations are
presented in Figure 2.

One can see from Figure 2b that k′r considerably varies
when 0.00919 < k0 < 0.00922 nm−1. As k′r decreases with
increase of k0, it is possible to call such a dispersion neg-
ative. The value of k′′r is also strongly varies in this area.
The sign of k′′r is positive that corresponds to absorption
of transverse wave.

The dependence of kl upon k0 is similar to the rela-
tions just examined. However, there are some important
features. First, the dispersion of k′l is positive. Second, k′′l
has negative sign that corresponds to the amplification of
longitudinal wave.

The dependence of dispersion law upon distance be-
tween atoms is also of interest. This distance being in-
creased, the areas where the essential changes of kr and
kl take place come nearer to each other and their values
come nearer to vacuum values.

Now, we take up the point about change of dispersion
law for k′′r , k′′l with the change of angle between axis of
system, i.e. y-axis, and wave vector of incident wave. This
angle being increased from 0◦ up to 90◦, the decreasing of
the width of resonance characteristics and simultaneous
increase of the maximum of the modulus of appropriate
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quantities are observed. The changes can be rather signif-
icant. So, if the angle is approximately equal to zero the
maximum of |k′′l | is equal to 0.00008 nm−1, and if the angle
will be increased up to 85◦, the corresponding maximum
is increased up to 0.0003 nm−1.

5 Electric field of light wave outside the small
object

Let us substitute expressions (3.8) into equation (2.1) and
obtain the field of light wave in the observation points
outside the small object. In this case Green function
exp (ik0Rj)/Rj relates induced dipole j and observation
point r outside the small object.

Let us consider the field of light wave in wave zone
relative to the origin of coordinates. Let us assume that
the size of object is significantly less than wavelength of
light. Hence, the approximate equality Rj ≈ r is held
where r is the distance from the origin of coordinates to
the observation point. The external wave is supposed to
be linearly polarized in the plane containing both atoms,
i.e. in the plane zy.

In wave zone, where r � k−1
0 , the principal role is

played by retarding terms of expression (2.7) inversely pro-
portional to relative distance r. One can be convinced that
the remaining terms in (2.7) yield the considerably small
contribution. Therefore, we have the following formula for
the electric field strength of light wave in wave zone:

E(r, t) = EI(r, t) +
k2

0

r
n× (p× n) exp (ik0R) + cc, (5.1)

where n = r/r is the unit vector directed from the small
object to observation point, p = p1 + p2 is the resultant
dipole moment of object. Vector p is easily to find using
the formulas (3.8). Indeed, taking into account that the
quantities p1 and p2 are harmonic functions of time, we
come to the following formula for p:

p = p0 exp (−iωt) + cc, (5.2)

where

py0 = α
1 + 2αG exp (ik0R)

1− 4α2G2 exp (i2k0R)
(1 + exp [ik0 ·R])Ey0I ,

pβ0 = α
1− αF exp (ik0R)

1− α2F 2 exp (i2k0R)
(1 + exp [ik0 ·R])Eβ0I .

(5.3)

The end of vector p in general case describes an ellipse
in space, therefore, we can represent vector p0, defined by
formulas (5.3), as:

p0 = (p′0 + ip′′0 ) exp (−iδ) , (5.4)

where p′0, p′′0 are two mutually perpendicular material vec-
tors, δ is some real number.

The substitution of expression (5.4) into the
formula (5.1) results in the decomposition of the field
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Fig. 3. Angle between vector p′0 and vector of polarization of
external wave ϕ as a function of frequency. The angle between
k0 and R equals to 45◦, R = 1 nm, ω0 = 2.715 × 1015 s−1,
T = 10−8 s. Corresponding curve for one atom concurs with
k0 axis.
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Fig. 4. Amplitude of field in wave zone as a function of
wave number: curve 1 corresponds to single atom, curve 2
corresponds to two atoms.

in wave zone into two linearly polarized waves which
planes of polarization and amplitudes are determined by
vectors p′0 and p′′0 . Numerical analysis shows that the mag-
nitude of |p′′0 |/|p′0| is much less than 1 in all optical range,
therefore, it is possible to regard with large accuracy that
the field in question is completely determined by vector
p′0. The latter means that the field in wave zone is lin-
early polarized. However, unlike the case when the field
in wave zone is created by one dipole, the orientation of
vector p′0 depends on the frequency of external field. One
can see from Figure 3 that the angle between vector de-
termining polarization of external wave and vector p′0 is
essentially varies in some range of k0.

Thus, relative to the field in wave zone, the pair of
atoms behaves like a dipole which axis can change its po-
sition in space with changing the frequency of external
field.
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Now, let’s take up the point about the amplitude char-
acteristics of the field. The analysis of the dependence of
vector p′0 modulus upon k0 shows that it always has two
maxima situated at different sides of the maximum that
would appear in the case of one atom. Difference between
values of k0 corresponding to these maxima depends on
interatomic distance. The latter being increased, this dif-
ference decreases and the magnitude of maxima increases
(Fig. 4).

Conclusion

Thus, in this paper the interaction of small object formed
by two atoms is investigated with an external field. We
obtained the expressions for electric fields inside and out-
side of small object. The investigation of electric field in
wave zone has demonstrated that the presence of the sec-
ond atom in the system influences not only the amplitude
characteristics of the field, but also results in the change of
the appropriate polarizing characteristics. It means that it
is possible to obtain the information about intrinsic prop-
erties of small object formed by two dipole atoms with the
aid of specially organized experiment.

This work is supported by Russian Foundation for Basic Re-
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(Grant A 0065).
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